3,454 research outputs found

    Anodal transcranial direct current stimulation over the primary motor cortex attenuates capsaicin‐induced dynamic mechanical allodynia and mechanical pain sensitivity in humans

    Get PDF
    BACKGROUND: Anodal transcranial direct current stimulation over the primary cortex has been shown to activate regions of the brain involved in the descending modulation of pain sensitivity. However, more research is required in order to dissect the spinal cord analgesic mechanisms associated with the development of central sensitisation. METHODS: In this randomised, double blind, cross over study 12 healthy participants had baseline mechanical stimulus response (S/R) functions measured before and after the development of capsaicin-induced ongoing pain sensitivity. The effects of 20 min of either real or sham transcranial direct current stimulation (tDCS, 2 mA) over the primary motor cortex on dynamic mechanical allodynia (DMA) and mechanical pain sensitivity (MPS) was then investigated. RESULTS: Topical application of capsaicin resulted in an increase in area under the pain ratings curve for both DMA (p < .01) and MPS (p < .01). The effects of tDCS on the area under the curve ratio (i.e. post/pre-treatment) revealed significant analgesic effects over DMA (p < .05) and MPS (p < .05) when compared to sham. CONCLUSIONS: This study demonstrates that anodal tDCS over the primary motor cortex can reduce both dynamic and static forms of mechanical pain sensitivity associated with the development of DMA and MPS, respectively. The use of tDCS may provide a novel mechanism-driven therapy in chronic pain patients with altered mechanical S/R functions

    Diffusion tensor imaging reveals changes in microstructural integrity along compressed nerve roots that correlate with chronic pain symptoms and motor deficiencies in elderly stenosis patients

    Get PDF
    Age-related degenerative changes in the lumbar spine frequently result in nerve root compression causing severe pain and disability. Given the increasing incidence of lumbar spinal disorders in the aging population and the discrepancies between the use of current diagnostic imaging tools and clinical symptoms, novel methods of nerve root assessment are needed. We investigated elderly patients with stenosis at L4-L5 or L5-S1 levels. Diffusion tensor imaging (DTI) was used to quantify microstructure in compressed L5 nerve roots and investigate relationships to clinical symptoms and motor neurophysiology. DTI metrics (i.e. FA, MD, AD and RD) were measured at proximal, mid and distal segments along compressed (i.e. L5) and intact (i.e. L4 or S1) nerve roots. FA was significantly reduced in compressed nerve roots and MD, AD and RD were significantly elevated in the most proximal segment of the nerve root studied. FA was significantly correlated with electrophysiological measures of root function: minimum F-wave latency and peripheral motor conduction time (PMCT). In addition, FA along the compressed root also correlated with leg pain and depression score. There was also a relationship between RD and anxiety, leg pain and disability score and AD correlated with depression score. Taken together, these data show that DTI metrics are sensitive to nerve root compression in patients with stenosis as a result of age-related lumbar degeneration. Critically, they show that the changes in microstructural integrity along compressed L5 nerve roots are closely related to a number of clinical symptoms associated with the development of chronic pain as well as neurophysiological assessments of motor function. These inherent relationships between nerve root damage and phenotype suggest that the use DTI is a promising method as a way to stratify treatment selection and predict outcomes

    Combined study of time-series bifurcation and power spectral behaviour of a thalamo-cortico-thalamic neural mass model

    Get PDF
    A combined power spectral and time-series bifurcation analysis of a neural mass model is presented. Such 'multi-modal' analytical techniques are being used in several researches to understand Electroencephalograph (EEG) anomalies in brain disorders [1][2], in contrast to 'power spectra-only' analytical studies that were more common during the early days of EEG analysis. In a recent work, a combined analysis of a simple thalamo-cortical neural mass model in context to EEG abnormality in Alzheimer's disease (AD) is presented [3]. The study shows that 'unimodal' analytical techniques such as power spectra-only studies without a simultaneous observation of the time-series model output may lead to anomalous conclusions and hypotheses. Towards this, in this work, a 'multi-modal' analytical technique is applied on a thalamocorticothalamic (tct) model, which was earlier studied using power-spectra analysis only [4]. The tct model is an enhanced version of that used in [3] and is based on biological data available in current literature. Furthermore, it aims to mimic thalalmocortical oscillations such as observed in the EEG of both healthy and diseased brain. Here, the power spectra of the tct model output is observed within the δ (1-3 Hz), θ (4-7 Hz), α (8-13 Hz), β (14-30 Hz) bands, along with a simultaneous analysis of the time series behaviour, the latter showing three behavioural modes: noisy point-attractor, spindle and limit-cycle. With all parameters at their basal values, the output time series is in a noisy point-attractor mode with maximum power within the alpha band (Figure 1). However the model shifts into a limit cycle oscillatory mode with a decrease in inhibitory connectivity parameters in the model (Figure 1); the corresponding power spectra show an increase in peak power within the θ and δ bands along with a simultaneous decrease in power within the α and β bands. The model behaviour is very much in agreement with in-vitro studies [5] which report an increased theta band power and a simultaneous decreased alpha band power during transition from wakefulness to sleep. Furthermore, the in-vitro time-series are qualitatively very similar to those obtained using the model. Thus, the model indicates a decreased inhibitory activity to be the neural correlate of the transitive state between wakefulness and sleep. On the other hand, increased mean firing activity of the extrinsic model inputs pushes the model, first into a spindling mode, and then into a limit cycle mode. In this state, the power within the delta band shows a significant increase compared to those within the other frequency bands. This behaviour is more similar to in-vivo studies of awake-to-sleep transition as reported in [5]

    Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons.

    Get PDF
    It is now widely accepted that certain types of cognitive functions are intimately related to synchronized neuronal oscillations at both low (alpha/theta) (4-7/8-13 Hz) and high (beta/gamma) (18-35/30-70 Hz) frequencies. The thalamus is a key participant in many of these oscillations, yet the cellular mechanisms by which this participation occurs are poorly understood. Here we describe how, under appropriate conditions, thalamocortical (TC) neurons from different nuclei can exhibit a wide array of largely unrecognised intrinsic oscillatory activities at a range of cognitively-relevant frequencies. For example, both metabotropic glutamate receptor (mGluR) and muscarinic Ach receptor (mAchR) activation can cause rhythmic bursting at alpha/theta frequencies. Interestingly, key differences exist between mGluR- and mAchR-induced bursting, with the former involving extensive dendritic Ca2+ electrogenesis and being mimicked by a non-specific block of K+ channels with Ba2+, whereas the latter appears to be more reliant on proximal Na+ channels and a prominent spike afterdepolarization (ADP). This likely relates to the differential somatodendritic distribution of mGluRs and mAChRs and may have important functional consequences. We also show here that in similarity to some neocortical neurons, inhibiting large-conductance Ca2+-activated K+ channels in TC neurons can lead to fast rhythmic bursting (FRB) at approximately 40 Hz. This activity also appears to rely on a Na+ channel-dependent spike ADP and may occur in vivo during natural wakefulness. Taken together, these results show that TC neurons are considerably more flexible than generally thought and strongly endorse a role for the thalamus in promoting a range of cognitively-relevant brain rhythms

    Accurate computation of quaternions from rotation matrices

    Get PDF
    The final publication is available at link.springer.comThe main non-singular alternative to 3×3 proper orthogonal matrices, for representing rotations in R3, is quaternions. Thus, it is important to have reliable methods to pass from one representation to the other. While passing from a quaternion to the corresponding rotation matrix is given by Euler-Rodrigues formula, the other way round can be performed in many different ways. Although all of them are algebraically equivalent, their numerical behavior can be quite different. In 1978, Shepperd proposed a method for computing the quaternion corresponding to a rotation matrix which is considered the most reliable method to date. Shepperd’s method, thanks to a voting scheme between four possible solutions, always works far from formulation singularities. In this paper, we propose a new method which outperforms Shepperd’s method without increasing the computational cost.Peer ReviewedPostprint (author's final draft

    ATP-Dependent Infra-Slow (<0.1 Hz) Oscillations in Thalamic Networks

    Get PDF
    An increasing number of EEG and resting state fMRI studies in both humans and animals indicate that spontaneous low frequency fluctuations in cerebral activity at <0.1 Hz (infra-slow oscillations, ISOs) represent a fundamental component of brain functioning, being known to correlate with faster neuronal ensemble oscillations, regulate behavioural performance and influence seizure susceptibility. Although these oscillations have been commonly indicated to involve the thalamus their basic cellular mechanisms remain poorly understood. Here we show that various nuclei in the dorsal thalamus in vitro can express a robust ISO at ∼0.005–0.1 Hz that is greatly facilitated by activating metabotropic glutamate receptors (mGluRs) and/or Ach receptors (AchRs). This ISO is a neuronal population phenomenon which modulates faster gap junction (GJ)-dependent network oscillations, and can underlie epileptic activity when AchRs or mGluRs are stimulated excessively. In individual thalamocortical neurons the ISO is primarily shaped by rhythmic, long-lasting hyperpolarizing potentials which reflect the activation of A1 receptors, by ATP-derived adenosine, and subsequent opening of Ba2+-sensitive K+ channels. We argue that this ISO has a likely non-neuronal origin and may contribute to shaping ISOs in the intact brain

    A disk of dust and molecular gas around a high-mass protostar

    Full text link
    The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars

    Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo

    Get PDF
    During NREM sleep and under certain types of anaesthesia, the mammalian brain exhibits a distinctive slow (<1 Hz) rhythm. At the cellular level, this rhythm correlates with so-called UP and DOWN membrane potential states. In the neocortex, these UP and DOWN states correspond to periods of intense network activity and widespread neuronal silence, respectively, whereas in thalamocortical (TC) neurons, UP/DOWN states take on a more stereotypical oscillatory form, with UP states commencing with a low-threshold Ca2+ potential (LTCP). Whilst these properties are now well recognised for neurons in cats and rats, whether or not they are also shared by neurons in the mouse is not fully known. To address this issue, we obtained intracellular recordings from neocortical and TC neurons during the slow (<1 Hz) rhythm in anaesthetised mice. We show that UP/DOWN states in this species are broadly similar to those observed in cats and rats, with UP states in neocortical neurons being characterised by a combination of action potential output and intense synaptic activity, whereas UP states in TC neurons always commence with an LTCP. In some neocortical and TC neurons, we observed ‘spikelets’ during UP states, supporting the possible presence of electrical coupling. Lastly, we show that, upon tonic depolarisation, UP/DOWN states in TC neurons are replaced by rhythmic high-threshold bursting at ~5 Hz, as predicted by in vitro studies. Thus, UP/DOWN state generation appears to be an elemental and conserved process in mammals that underlies the slow (<1 Hz) rhythm in several species, including humans

    Diffusion tensor imaging of lumbar spinal nerves reveals changes in microstructural integrity following decompression surgery associated with improvements in clinical symptoms: A case report

    Get PDF
    The outcomes from spinal nerve decompression surgery are highly variable with a sizable proportion of elderly foraminal stenosis patients not regaining good pain relief. A better understanding of nerve root compression before and following decompression surgery and whether these changes are mirrored by improvements in symptoms may help to improve clinical decision-making processes. This case study used a combination of diffusion tensor imaging (DTI), clinical questionnaires and motor neurophysiology assessments before and up to 3 months following spinal decompression surgery. In this case report, a 70-year-old women with compression of the left L5 spinal nerve root in the L5-S1 exit foramina was recruited to the study. At 3 months following surgery, DTI revealed marked improvements in left L5 microstructural integrity to a similar level to that seen in the intact right L5 nerve root. This was accompanied by a gradual improvement in pain-related symptoms, mood and disability score by 3 months. Using this novel multimodal approach, it may be possible to track concurrent improvements in pain-related symptoms, function and microstructural integrity of compressed nerves in elderly foraminal stenosis patients undergoing decompression surgery
    corecore